Интенция | Все о философии
Регистрация или вход Регистрация или вход Главная | Профиль | Рекомендовать | Обратная связь | В избранное | Сделать домашней
Меню
Основы
Онтология
Гносеология
Экзистенциология
Логика
Этика

История философии
Досократики
Классический период античной философии
Эллинистическая философия
Cредневековая философия
Философия эпохи возрождения
Философия Нового времени
Философия Просвещения
Классическая философия
Постклассическая философия

Философия общества
Проблемы устройства общества
Философская антропология

Философия религии
Буддизм
Ислам
Христианство

Опрос
Есть ли что-то, над чем нельзя смеяться?

Есть
Нет
Не решил


Результаты
Другие опросы

Всего голосов: 453
Комментарии: 0
Спонсоры

Основы философии

Поиск

[ Главная | Лучшие | Популярные | Список | Добавить ]

Основания формальной логики



Скажем, наиболее общая сущность – это субстанция, род. Можно разделить этот род на некоторые виды. Субстанция бывает или телесной, или бестелесной. Телесные существа в свою очередь бывают одушевленные и неодушевленные. Рассмотрим одушевленные существа: они бывают чувствующие и не чувствующие (скажем, животные и растения). Рассмотрим чувствующие существа: они бывают разумные и неразумные. Рассмотрим разумные существа: среди них есть люди, а среди людей уже есть индивиды. Т. обр., нисходя по древу Порфирия, можно увидеть увеличение количества видовых отличий. Некоторый индивид, напр., Сократ обладает сущностью, он имеет тело, он живое существо, одушевленное, разумное и т. д. Можно восходить дальше: скажем, отрицая наличие какой-то сущности у Сократа, вы восходите к некоему виду. Убирая некоторые индивидуальные отличия Сократа (напр., лысину на голове), мы приходим к пониманию человека вообще. Убирая случайные признаки и оставляя неслучайные, мы приходим к идее человека. Убирая разумное понимание, восходим к одушевленному и т.д. Каждый раз восхождение по древу Порфирия идет за счет того, что мы убираем некоторые характеристики – акциденции.

Понятно, что самая высшая божественная сущность может быть описана только на апофатическом языке – потому что мы отбросили все акциденции. Только отбросив все акциденции, мы приходим к пониманию Бога, – т. е. того, что никак нельзя определить. Само слово «определить» означает «положить предел».

Древо Порфирия было очень популярным в Средние века.

8. Неопределяемые понятия

Ни одна наука не может определить все свои понятия. Ведь определить понятие значит выразить его через какие-то другие понятия; если мы и эти понятия захотим определить, это будет значить, что нам придется выразить их через какие-то третьи, и т.д. Такой процесс не может продолжаться бесконечно, и какие-то понятия мы будем вынуждены оставить без определения. Поэтому первоначальные понятия всякой науки – неопределяемые. Нужно только стремиться к тому, чтобы таких [первичных] понятий было по возможности немного и они были достаточно простыми, так что их смысл можно было бы хорошо усвоить, опираясь на примеры и приблизительные разъяснения. – Вообще, определение понятия может быть полезно только тогда, когда те понятия, к которым оно при этом сводится, проще и яснее, чем оно само. В прот. случае попытка дать определение – бесплодное словоговорение и может запутать дело.

Уточнение содержания научного понятия может быть далеко не простой задачей. Бывает, что понятие, знакомое с детства каждому, кто учился в школе, при анализе его логического строения оказывается весьма сложным, и если удается его уточнить, это позволяет добиться большей четкости в постановке научных проблем и более успешно их решать. Иногда разные авторы обозначают одним термином разные, хотя и близкие, понятия, и это ведет к разногласиям и спорам, в которых говорить о правоте той или другой стороны не имеет смысла ввиду нарушения закона тождества. В таких случаях единственный способ выяснить существо дела – уточнение понятий.

9. Единичные и общие понятия

Понятие называется единичным, если его объем состоит из одного предмета. Примеры единичных понятий: «Москва-река», «Эйфелева башня», «Александр Македонский», «Тридцатилетняя война», «число 5». Понятия, не являющиеся единичными, принято называть общими. При отнесении того или иного понятия к разряду единичных необходимо соблюдать осторожность, помня, что объем понятия состоит не из предметов как таковых, а из представлений о них. Напр., понятие «президент СССР» вряд ли стоит считать единичным, хотя в СССР был только один президент – М. С. Горбачев: можно ведь представить себе, скажем, роман какого-нибудь писателя о некоем вымышленном президенте СССР. В то же время понятие «М. С. Горбачев, занимавший пост президента СССР в 1990–91 гг.» – единичное.

10. Собирательные понятия

Понятие называется собирательным, если предметы, входящие в его объем, представляют собой совокупности некоторых «однородных» предметов, рассматриваемые «в целом». (Таким образом, объем собирательного понятия есть класс, элементы которого являются в свою очередь классами.) Примеры собирательных понятий: «толпа», «аудитория» (в смысле «слушатели лекции, доклада и т.п.»), «стая», «кустарник», «мебель», «крестьянство». Собирательные понятия не отличаются сколько-нибудь принципиально от остальных. В частности, над ними можно производить операции обобщения и ограничения; например, понятие «стая гусей» есть ограничение понятия «стая», «русское крестьянство XVIII-го столетия» – ограничение понятия «крестьянство», «растительность» – обобщение понятия «кустарник». Собирательные понятия могут быть единичными (например, «1-й «А» класс 162-й школы г. Новосибирска»).

11. Конкретные и абстрактные понятия

В традиционной логике различают конкретные и абстрактные понятия. Конкретные понятия – это те, объемы которых состоят из предметов: «стол», «береза», «город», «студент» и т. п.

Сюда же относят такие понятия, как «прозрачный», «тяжелый», т. к. они отвечают классам, состоящим из конкретных прозрачных или тяжелых предметов. Понятия, объемы которых состоят из воображаемых предметов, которые мы представляем себе так или иначе подобными реальным конкретным предметам – «кентавр», «единорог», «инопланетянин» и т. п. – также естественно считать конкретными.

Остальные понятия – абстрактные. К ним относятся все научные понятия («треугольник», «энергия», «кислота», «млекопитающее», «феодализм» и т. п.), а также многие «обиходные» («прозрачность», «тяжесть», «бег», «удивление», «забота» и т.п.) Впрочем, граница между конкретными и абстрактными понятиями весьма условна, и разные авторы проводят ее по-разному: некоторые относят к конкретным все понятия, выражаемые существительными, имеющими множественное число (или большую часть таких понятий), другие считают, что все вообще понятия абстрактны.

3. Суждение (высказывание)


Рассуждения выражаются в словах. Изучение предложений является, вообще говоря, делом лингвистики. Современные лингвисты также относят “смысловую законченность” к главным признакам предложения. Чаще всего при этом выраженная в предложении “законченная мысль” может представляет собой суждение (хотя бывают вопросы, восклицания, приказы, пожелания, просьбы).

Всякое достаточно строгое суждение может быть изложено так, чтобы оно состояло только из предложений, представляющих собой четко сформулированные утверждения о каких-то фактах, так что для каждого такого утверждения можно спросить, истинно оно или ложно, и на этот вопрос имеется недвусмысленный ответ «Да» или «Нет». Только такие предложения и будут интересовать нас в дальнейшем; говоря о суждениях, мы всегда будем подразумевать, что они именно таковы.

Для каждого суждения А интересующего нас типа мы будем теперь писать А = И, если А истинно (т. е. истинно утверждение, выражаемое предложением А) и А = Л, если А ложно. При этом предложение А может быть записано как в словесной, так и в какой-либо символической форме, например:

Волга впадает в Каспийское море = И;

Днепр впадает в Каспийское море = Л;

Кит – млекопитающее = И;

Кит – рыба = Л;

6 – четное число = И;

6 – нечетное число = Л;

2 + 2 = 4 = И;

2 + 2 = 5 = Л.

Букву И или Л мы будем называть истинностным значением соответствующего предложения.

4. Основные логические законы


Перечисленные ниже 4 закона (их часто называют «основными логическими законами»), конечно, далеко не исчерпывают всех условий, которым должно удовлетворять любое правильное рассуждение; это только самые простые и очевидные (но важные!) закономерности. Их соблюдение не достаточно для правильности рассуждения, но необходимо: никакое рассуждение, в котором хотя бы один из этих законов нарушен, не может считаться правильным. Перейдем теперь к их рассмотрению. Неумение или нежелание уточнять смысл слов – постоянный источник ошибок в рассуждениях.

1. Закон тождества

Закон тождества состоит в том, что когда в одном рассуждении несколько раз появляется мысль об одном и том же предмете, мы должны каждый раз иметь в виду тот же самый предмет, строго следя за тем, чтобы он не был вольно или невольно подменен другим, в чем-то с ним сходным.

Разместил: rat Дата: 20.03.2009 Прочитано: 5679
Распечатать

Всего 1 на 4 страницах по 1 на каждой странице

<< 1 2 3 4 >>

Дополнительно по данной категории

20.03.2009 - Природа логики
20.03.2009 - Нормативный характер логики
20.03.2009 - Ограниченность формальной логики
20.03.2009 - Логические ошибки и парадоксы

Нет комментариев. Почему бы Вам не оставить свой?

Вы не можете отправить комментарий анонимно, пожалуйста войдите или зарегистрируйтесь.

философский камень
Полезное
Главная | Основы философии | Философы | Философская проблематика | История философии | Актуальные вопросы