Интенция | Все о философии
Регистрация или вход Регистрация или вход Главная | Профиль | Рекомендовать | Обратная связь | В избранное | Сделать домашней
Меню
Основы
Онтология
Гносеология
Экзистенциология
Логика
Этика

История философии
Досократики
Классический период античной философии
Эллинистическая философия
Cредневековая философия
Философия эпохи возрождения
Философия Нового времени
Философия Просвещения
Классическая философия
Постклассическая философия

Философия общества
Проблемы устройства общества
Философская антропология

Философия религии
Буддизм
Ислам
Христианство

Опрос
Нужно ли преподавать в ВУЗах дисциплину "Философия"?

Да
Нет
Не определился (-ась)


Результаты
Другие опросы

Всего голосов: 549
Комментарии: 0
Спонсоры

Основы философии

Поиск

[ Главная | Лучшие | Популярные | Список | Добавить ]

Алгебро-логическая проблематика у родоначальника семиотики Ч. С.Пирса

Американский представитель математической логики Чарльз Сандерс Пирс (Charls Sanders Peirs) внес существенный вклад в разработку алгебро-логических концепций и выступил основоположником новой науки — семиотики (общей теории знаков). Пирс родился 10 сентября 1839 г., в Кембридже (США) в семье профессора Гарвардского университета. Предки Пирса были англичанами.
В 1887 г. Пирс поселился в Милфорде (штат Пенсильвания). Скончался он 19 апреля 1914 г., в нищете, забытый своими друзьями и знакомыми. Высокогорные вершины края не раз оказывали ему свой приют и защиту от докучливой общительности кредиторов.
Пирса можно рассматривать как основоположника семиотики, зачинателя логико-семантических исследований. Он разрабатывал науку, изучающую любые системы знаков, применяемые в человеческом коллективе. Пирс пытался, в частности, исследовать языки науки как частный случай знаковых систем. Предметом семиотического анализа, согласно Пирсу, являются модели отображаемых объектов, состоящие из конечного набора элементов и связывающих их соотношений.
Пирс определяет знак как такой элемент х, который заменяет субъекту (как интерпретатору знака) некоторый элемент у (денотат) по признаку (или отношению) Д. Согласно Пирсу, “наиболее общее подразделение знаков таково: изображения (icons), индексы (indices) и символы (symbols). Объектом знака является вещь. Основная функция знака, по Пирсу, состоит в квантовании (“кадрировании”) опыта. У Пирса имеется уже в зародыше моррисовское расчленение семиотики на прагматику (касается отношения знака к его использователю), семантику (выясняет отношение знака к обозначаемому им объекту) и синтактику (исследует взаимоотношения между знаками). Анализирует Пирс и семиотику восприятия знака, учитывая, в частности, существенную разницу между воспринимаемыми и передаваемыми знаковыми сообщениями. В свете своей знаковой теории рассматривает Пирс логическую проблему значения. Именно, значение описывается им как отношение между знаком и операциями познающего субъекта.
В комбинированном исчислении классов и высказываний Пирс употреблял еще в 1880 г. точные аналоги как совершенной дизъюнктивной нормальной формы (разумеется, в несколько отличных от современных обозначениях). Эти результаты допускали их простую синтаксическую интерпретацию для чистого исчисления высказываний, которое было представлено у Пирса в довольно развитой форме. Вот, в частности, некоторые переданные в современной записи законы материальной импликации, сформулированные Пирсом в его исчислении (ниже знак “-” символизирует материальную импликацию);
(1) ((x - y) - x) - x (закон Пирса),
(2) x-(y-x),
(3) ((x-y) - a)- x, где a - есть имя тождественно ложной константы.
(4) (x-(y-z)) -(y-(x-z),
(5) x-((x-y) -y)),
(6) (x-y) -((y-z) - (x-z)).
Наряду с материальной импликацией Пирс допускал еще содержательную трактовку логического следования, которая дает возможность считать Пирса в известном смысле предшественником льюисовской теории строгой импликации.
Определенное развитие получила, у Пирса и логика отношений. Он следующим образом вводит нас в круг понятий этой теории. Пусть элементы данного конечного класса {а} обозначены с помощью символов A1, A2, A3,…An-1, An. Их сумму он записывает так: а = A1+A2+A3+…+An-1+An= , где i=1…., n . Пусть а означает: “живые люди”, А1, ..., Аn — имена ныне живущих людей, р — “группа предков”. Тогда относительный термин “группа предков некоторых живых людей” Пирс передаст символикой , так как Рa = Р (А1 +А2,+А3+... + ... An-1 + Аn). Относительный термин “группа предков каждого живого человека” Пирс передал бы записью: Па(p/a), так как Ра = Р(А1 .А2 . Аn-1 + An)=рА1 . рА2.…. рAn. Легко убедиться в справедливости следующей теоремы о выполнимости такой дизъюнкции: Па Пр((Па (р/a))
Употребляя табличное задание отношений с помощью матриц, состоящих из нулей и единиц, Пирс явно упреждает соответствующие методы в алгебре отношений Эрнста Шредера. Вместе с последним он должен рассматриваться как пионер математической теории структур. Так, уже в 1870 г. Пирс дал аксиоматическое определение частично-упорядоченного множества, задав его с помощью аксиом рефлексивности, несимметричности и транзитивности. Он сформулировал также определение сумм и произведений в терминах отношения включения.
Логические и математические результаты Пирса своевременно оценены не были, а часть их увидела свет только после смерти автора. Его семиотические идеи были продолжены в работах Ч.Морриса. Для современных исследований по семиотике характерно синтезирование традиций Пирса с логическими построениями Р. Карнапа.
Разместил: czaar Дата: 13.05.2009 Прочитано: 1819
Распечатать

Дополнительно по данной категории

13.05.2009 - Филон
13.05.2009 - Стоики - творцы античной формы пропозиционального исчисления
13.05.2009 - Август Де Морган — основоположник логической теории отношений
13.05.2009 - Исчисление классов Джорджа Буля
13.05.2009 - Эрнст Шредер

Нет комментариев. Почему бы Вам не оставить свой?

Вы не можете отправить комментарий анонимно, пожалуйста войдите или зарегистрируйтесь.

Интересное
философский камень
Полезное
Главная | Основы философии | Философы | Философская проблематика | История философии | Актуальные вопросы